

CONTENTS

v	Introduction and Exam Guidelines
V	How to use this book
V	The syllabus and the exam
viii	Effective revision – setting smart goals
ix	Final preparation for the written exam
x	Study/revision plan

Core Topics

Tick the yellow box when you have revised each topic.

1.	Food Science and Nutrition	2
	Food choices	2
	Nutrients	2
	Protein	3
	Carbohydrates	.13
	Lipids	.23
	Vitamins	.32
	Minerals	.42
	Water	.49
2.	Diet and Health	51
	Energy	.51
	Dietary guidelines	.53
	Dietary and food requirements	.54
	Individual dietary requirements	.55
	Dietary needs for diet-related health problems	.62
	Modified diets	.66
	The Irish diet	.75
	Aspects of malnutrition	.79
3.	Food Studies	81
Par	rt One	.81
	Food commodities	.81
	Meal management and planning1	23
	Food preparation and cooking processes	23

	Food preparation and cooking equipment	129
	Recipe balance and adaptation	130
	Aesthetic awareness of food	132
	Sensory analysis	134
	The Irish food industry	138
F	Part Two	147
	Food processing and food profiles	147
	Food packaging	153
	Food labelling	157
	Food additives and food contaminants	161
	Food spoilage – microbiology	167
	Food spoilage and food poisoning	177
	Food preservation	182
	Food safety and hygiene	195
	Food legislation	204
	rood legislation	204
2	4. Family Resource Management and Consumer Studies	207
4	Family Resource Management and Consumer Studies Family resource management	207
4	Family Resource Management and Consumer Studies Family resource management Management of household financial resources	207
4	 Family Resource Management and Consumer Studies Family resource management	207 207 213 228
2	 Family Resource Management and Consumer Studies Family resource management	207 207 213 228 234
2	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles 	207 207 213 228 234 247
	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies 	207 207 213 228 234 247 253
2	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies 	207 207 213 228 234 247 253
_	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies. Social Studies: The Family in Society 	207 207 213 228 234 247 253 271
2	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies. Social Studies: The Family in Society Sociological terms 	207 213 218 234 234 253 253 271
2	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies. Social Studies: The Family in Society Sociological terms The family 	207 207 213 228 234 247 253 271 271 272
2	 Family Resource Management and Consumer Studies Family resource management. Management of household financial resources. Housing finance. Household technology. Textiles. Consumer studies. Social Studies: The Family in Society Sociological terms	207 213 228 234 247 253 271 271 272 279
	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies. Social Studies: The Family in Society Sociological terms The family Marriage Family as a caring unit 	207 207 213 228 234 247 253 271 271 272 279 286
	 Family Resource Management and Consumer Studies Family resource management Management of household financial resources Housing finance Household technology Textiles Consumer studies. Social Studies: The Family in Society Sociological terms The family Marriage Family as a caring unit Family law 	207 213 228 234 247 253 271 271 271 279 279 286 296

- Revise your chosen elective on **www.moresuccess.ie**:
 - Elective 1: Home Design and Management
 - Elective 2: Textiles, Fashion and Design
 - Elective 3: Social Studies
- **Chapter 3:** Extra revision on **Food Studies** builds your confidence in this extensive topic

Just search for Home Economics Leaving Cert and look under 'Additional Resources'.

INTRODUCTION AND EXAM GUIDELINES

Week	Revision	LINKS – examples	Links and/or revision – examples
1	Food choice, protein, dietary guidelines, vegetarian diets	Meat, poultry, eggs, food preparation and cooking (meal management and planning), the Irish diet	Components of management, consumer choice
2	Lipids, dietary requirements, energy requirements, obesity, CHD, diabetes	Fats, oils, storage of lipid foods, food additives, food preparation and cooking methods	Consumer choice
3	Carbohydrates, dietary requirements, energy, coeliac disease, diabetes, obesity	Cereals, fruits vegetables, food preparation and cooking (sauce making, pastry making)	Management of household finances, consumer choices
4	Vitamins, minerals, dietary guidelines	The Irish diet, food additives, nutritional supplements	Household technology, consumer studies
5	Food profiles, alternative protein foods	The Irish food industry, food processing and packaging	Family resource management
6	Microbiology, food spoilage and preservation	Food preparation and cooking (yeast), food safety and hygiene, HACCP	Consumer responsibility, consumer protection
7	Aesthetic awareness of food	Food agencies and food legislation	Housing
8	Resource management	Revise any topics not covered	Textiles
9	The family	Family resource management	Family resource management
10	Marriage	The family, functions and legislation	
11	Family as a caring unit	Food requirements of different family members Meal management and planning	Family resource management, household financial management, housing
12	Elective 1 or 2 or 3 – <i>List the topics</i>		
13	Elective 1 or 2 or 3 – <i>List the topics</i>		

Food Science and Nutrition

- To learn and revise:
 - Food choices
 - Nutrients
 - Water

Food choices

aims

Factors affecting food choices:

- 1. Specific countries, cultural beliefs and traditions.
- 2. Availability, convenience and access to food.
- 3. Nutritional awareness and health status.
- 4. Sensory aspects and food presentation.
- 5. Financial resources.
- 6. Eating patterns, lifestyle and preferences.
- 7. Cookery and health TV programmes.
- 8. Advertising and marketing campaigns.

Nutrients

van

Macronutrients	Micronutrients
 Protein Lipids (fats/oils) Carbobydrates 	 Vitamins fat-soluble water-soluble
	 Minerals

LINKS

- Individual dietary requirements (p. 55)
- The Irish diet (p. 75)
- Meal management and planning (p. 123)

Nutrients may be included in questions on dietary requirements, food commodities, methods of cooking or methods of processing.

You must *understand* and *be able to explain* what is meant by these **nutritional terms**:

- Macronutrients
- Micronutrients
- Elemental composition
- Chemical formula or equation
- Classification
- Sources
- Properties
- Reference intake

- Biological functions
- Biological value
- Energy value
- Digestion
- Absorption and utilisation of digested nutrients
- Enzymes
- Substrate

Protein

axam

Elemental composition

- Carbon (C), hydrogen (H), oxygen (O) and nitrogen (N).
- Some contain sulphur (S), iron (Fe) and phosphorus (P).

Chemical structure

- Proteins are made up of chains of amino acids.
- Amino acids contain carbon, hydrogen, a variable (R), an amino group (NH₂) and an acidic carboxyl group (COOH).

Basic amino acid

Practise drawing and labelling the chemical structure of an amino acid.

Cysteine showing the R (variable) group

Essential and non-essential amino acids

- There are 20 common amino acids.
- Eight are essential for adults (these cannot be made by the body).
- Children need these eight plus two more (ten in total).

Essential amino acids	Non-essential amino acids
Cannot be made by the bodyMust be supplied by food	• Can be made by the body
<i>Examples:</i> isoleucine, leucine, lycine, methionine, phenylalanine, threonine, tryptophan, valine <i>For children:</i> histidine, arginine	<i>Examples:</i> alanine, aspargine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, tyrosine

Peptides and peptide bonds

Amino acids are linked by a peptide bond. A carboxyl group (COOH) of one amino acid combines with an amino group (NH_2) of the next amino acid. A molecule of water (H_2O) is released (condensation) during this process. A dipeptide is formed.

LESS STRESS MORE SUCCESS

Hydrolysis

During digestion the reverse of the condensation process happens. Peptide bonds are broken by the addition of water, producing single amino acids. This is called hydrolysis.

- Two amino acids linked by peptide bond = **dipeptide**.
- Three amino acids linked = tripeptide.
- Many amino acids linked
 - = polypeptide chain.

exam focus

Practise drawing and labelling a peptide bond/link showing condensation and hydrolysis.

LINKS

- Digestion of protein (p. 9)
- Absorption of amino acids/ proteins (p. 10)

Exam question and sample answer

Higher Level 2014, Section B, Q1 (d)

(d) Give a detailed account of protein and refer to: Classification (simple and conjugated)

- LINK
- Classification of protein (p. 6)

(3 groups × 4 marks = 12 marks and 6 points × 2 marks = 12 marks = 24 marks)

Classification	Group	Sub-group	Examples	Food sources
Simple	Animal	(a) Fibrous	Collagen, elastin, myosin	Connective tissue (meat)
		(b) Globular	Myoglobin Lactalbumin Ovalbumin	Meat Milk Eggs
	Plant	(a) Glutelins	Glutenin Oryzenin	Wheat Rice
		(b) Prolamins	Gliadin Zein	Wheat Maize/corn
Conjugated (protein + non-protein)	Lipoproteins Phosphoproteins Nucleoproteins Chromoproteins		Lecithin Casein Chromosomes Myoglobin	Egg yolk Milk Cell nuclei/DNA Meat

 $(3 \text{ points} \times 5 \text{ marks} = 15 \text{ marks})$

Different amino acids

Peptide link

- Protein foods deficient in one or more amino acids can make up for the deficiency by being combined with foods rich in that amino acid at the same meal.
- A full complement of essential amino acids can be provided by serving (a) beans on toast (b) dhal and chapatti or (c) hummus and pitta bread. For example: Beans are high in lysine and low in methionine and toast is low inlysine and high in methionine.

Structure (primary, secondary and tertiary) Primary structure:

- The sequence of amino acids in a polypeptide chain.
- The chain is formed by peptide links.
- The OH from the carboxyl group of one amino acid joins with the H of an amino group of another amino acid and water (H₂O) is released (condensation reaction).

Secondary structure:

- Amino acids in polypeptide chains are further folded and cross-linked to create definite shapes and structures.
- Disulphide links occur when two sulphurs are linked together on a polypeptide chain or across two polypeptide chains e.g. two cysteine amino acids (contain SH group).
- Hydrogen bonds occur in polypeptide chains when hydrogen in one chain links with oxygen in a nearby chain, e.g. collagen.

Tertiary structure:

- Refers to the pattern of folding polypeptide chains into three-dimensional shapes.
- Chains are held in place by cross-links and to form fibrous (straight, coiled or zigzag) or globular (ball-shaped) structures.

Tertiary structure

- Pattern of folding polypeptide chains into three-dimensional shapes.
- Shapes are held in place by cross-links and may be fibrous (straight, coiled or zigzag) or globular (ball-shaped).

Classification of proteins

- 1. Simple proteins: contain amino acids.
- 2. Conjugated proteins: amino acids and a non-protein component.
- 3. Derived proteins: formed from chemical/enzymatic actions on the protein itself, e.g. rennin acts on caseinogen.

Simple proteins – amino acids only

Types	Examples	Sources
Animal		
Classified according to shape	(a) Fibrous	Collagen Elastin – connective tissue
	(b) Globular	Albumin – egg white
Plant		
Classified according to solubility	(a) Glutelins: • insoluble in water • soluble in acids and alkalis	Glutenin – wheat Oryzenin – rice
	(b) Prolamins: insoluble in water soluble in alcohol	Gliadin – wheat Zein – maize/corn

Conjugated proteins (protein + non-protein molecule)

Types	Examples	Source
Lipoprotein	Lecithin	Egg yolk
Phosphoproteins	Casein	Milk
Chromoproteins	Haemoglobin Myoglobin	Blood Meat
Nucleoproteins	Chromosomes	DNA (Deoxyribonucleic Acid)

Sources of protein – classification

Animal proteins	Plant proteins
Meat, fish, poultry, eggs, milk, cheese	Soya beans, whole cereals, nuts, pulses

Biological value (BV) – classification

- Measures the quality of a protein as a percentage.
- Is determined by how many essential amino acids a food has in proportion to the body's needs.

High biological value (HBV) proteins or complete proteins:

- Contain all the essential amino acids.
- Come mainly from animal sources (*exception*: soya beans source of HBV protein).

Low biological value (LBV) proteins or incomplete proteins:

- Lack one or more essential amino acids.
- Come mainly from plant sources (*exception*: gelatine source of LBV protein).

Biological value of foods and distribution of proteins

Foods	Biological value	Distribution of proteins	
Eggs	100%	Ovalbumin, vitelin, livetin	
Milk	95%	Casein, lactalbumin, lactoglobulin	
Meat	80–90%	Elastin, gelatine, collagen, myosin	
Fish	80–90%	Actin, myosin, collagen	
Soya Beans	74%	Glycinin	
Rice	67%	Oryzenin	
Wheat	53%	Gluten	
Maize	40%	Zein	
Gelatine	0%		

LINK

 Food commodities (p. 81)

LESS STRESS MORE SUCCESS

Supplementary role of protein

If a protein is deficient in one amino acid the deficiency can be overcome by eating a food rich in that amino acid at the same meal, e.g. beans on toast:

- Beans are **high** in lysine and **low** in methionine.
- Toast is **low** in lysine and **high** in methionine.

LINK

• Vegetarianism (p. 66)

The complementary role of proteins ensures that vegans and vegetarians can get all their essential amino acids from plant-based foods.

Properties of protein

1. Denaturation and coagulation	 Protein chain unfolds and its structure changes – loss in structure cannot be reversed. 	
	• Sequence of amino acids is the same.	
	The change may be due to:	
	 (a) Agitation – mechanical action, e.g. whipping or whisking an egg white (forming a foam) or cream. 	
	(b) Chemicals – adding acids, alkalis, enzymes, e.g. lemon juice causes milk to curdle.	
	(c) Heat – causes protein to coagulate and set, e.g. albumin in eggs.	
	(d) Enzymes – rennin coagulates caseinogen to casein.	
2. Solubility	Most proteins are insoluble in water.	
	Exceptions:	
	(a) Collagen is soluble in hot water.	
	(b) Albumin (egg white) is soluble in cold water.	
3. Maillard reaction (dry heat)	Non-enzymic browning results when an amino acid reacts with carbohydrate in dry heat, e.g. toast, roast potatoes, breads.	
4. Elasticity	Gluten (wheat) is very elastic – it allows breads and cakes to rise during baking.	
5. Moist heat	During stewing, boiling and steaming, connective tissue changes to gelatine, making foods more digestible.	
6. Gel formation	 A gel is a semi-solid viscous solution with a three-dimensional network in which molecules of water can become trapped. Gel formation process: (a) Gelatine absorbs water and swells to form a gel. (b) When heated the gel becomes liquid and forms a sol. 	
Practise drawing and labelling a diagram showing gel formation.	(c) On cooling, the sol sets and becomes solid. <i>Uses:</i> jellies, soufflés, cheesecakes	

7. Foam formation	 Whisking egg whites causes protein chains to unfold and air bubbles to form, which trap air (foaming).
	• Whisking produces heat, which lightly sets the egg white. Foam will collapse unless heated.
	Uses: meringues, pavlova

LINKS

- Food commodities (p. 81)
- Food preparation and cooking processes (p. 123)

Biological functions of protein

Туре	Functions	Deficiency
Structural proteins	 Growth and repair Production of cells, muscles and skin 	Stunted growthDelayed healing of wounds
Physiologically active	 Production of antibodies, enzymes, hormones, blood proteins and nucleoproteins 	 Illness and infections Malfunction of body systems and organs
Nutrient proteins	 Provide essential amino acids Excess converted to energy 	Lack of energyMarasmus and kwashiorkor

Energy value: 1 g protein = 4 kcal/17 kJ energy.

Reference Intake* - how much protein do I need?

1 g of protein a day is required for each 1 kg of body weight. (Children and adolescents need more for growth and development.)

Group	RI per day
Children	30–50 g
Adolescents	60–80 g
Adults	50–75 g
Pregnant women	70–85 g

Digestion of protein Hydrolysis and digestion of protein – a summary

Proteins are hydrolysed with the help of protein-splitting enzymes and water.

* Reference Intake (RI) was previously known as Recommended Daily Allowance (RDA).

Organ/gland	Secretions	Enzymes	Substrates	Products
Stomach	Gastric juice	Pepsin Rennin	Protein Caseinogen	Peptones Casein
Pancreas	Pancreatic juice	Trypsin	Peptones	Peptides
Small intestine (duodenum)	Intestinal juice	Peptidase	Peptides	Amino acids

Absorption of amino acids/proteins

Amino acids are absorbed by the blood vessels in the villi of the small intestine and transported to the liver via the hepatic portal vein.

Utilisation of amino acids

Amino acids in the liver are used to:

- Repair and maintain liver cells.
- Form new cells, repair damaged tissues and make antibodies, enzymes and hormones.
- Excess amino acids are deaminated in the liver.

Exam questions and sample answers

Higher Level 2017, Section A, Q1

Amino acids are the building blocks of proteins. Explain **and** give an example of **each** of the following terms.

- Essential amino acids: Cannot be manufactured by the body and must be supplied by the diet. 8 are essential for adults, 10 are essential for children. Examples: Isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, valine.
- Non-essential amino acids: Can be manufactured by the body and do not need to be supplied by the diet. Examples: alanine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, proline, serine, tyrosine.

Higher Level 2016, Section A, Q1

Name **one** food source of **each** of the proteins listed below.

Proteins	Food source
Casein	Milk
Actin	Meat
Albumin	Eggs

(6 marks)

(6 marks)

Higher Level 2015, Section A, Q1

Explain protein deamination.

Excess proteins are broken down by the liver. The amino group (NH₂) of the amino acids is converted into ammonia, then urea and excreted by the kidneys as waste product in urine. The carboxyl group (COOH) is oxidised and used to produce heat and energy. Excess is stored in the body as glycogen.

Higher Level 2013, Section A, Q1

(6 marks)

Complete the table below in relation to the **biological functions** of protein.

Туре	Biological functions
Structural proteins	Growth and repair of body cells, skin and muscles.
Physiologically active proteins	Production of antibodies, enzymes, hormones, blood proteins.
Nutrient proteins	Provide essential amino acids, excess is used for heat and energy.

Ordinary Level 2017, Section A, Q3

 $(3 \text{ ticks} \times 2 \text{ marks} = 6 \text{ marks})$

Indicate with a tick (\checkmark) which of the protein foods listed below are of high biological value and which are of low biological value.

Protein foods	High biological value	Low biological value
Eggs	✓	
Peas		✓
Fish	<i>✓</i>	

Ordinary Level 2016, Section A, Q1

(3 ticks × 2 marks = 6 marks)

Indicate with a tick (\checkmark) whether each of the following statements is true or false.

	True	False
Protein is the only nutrient that contains nitrogen.	1	
Excess protein is stored as adipose tissue.	<i>✓</i>	
Protein is necessary for growth of body cells.	<i>✓</i>	

(6 marks)

Ordinary Level 2015, Section A, Q2

Using the words listed, complete the statements in relation to the effect of heat on protein foods:

Maillard reaction coagulate opaque

- Heat causes the protein in eggs to coagulate.
- The non-enzymic browning of protein foods is called the Maillard reaction.
- Fish flesh changes from translucent to opague during cooking.

Ordinary Level 2013, Section B, Q1 (b), (c)

(b) Give an account of protein under each of the following headings:

Composition

 $(4 \text{ points} \times 1 \text{ mark} = 4 \text{ marks})$

(6 marks)

- Protein contains carbon, hydrogen, oxygen and nitrogen.
- Protein is the only nutrient that contains nitrogen which is essential for growth.
- Small amounts of sulphur, phosphorus and iron.
- Elements are arranged into basic units called amino acids.

Classification

 $(2 \text{ classes} \times 4 \text{ marks} = 8 \text{ marks})$

- Simple proteins: animal and plant source.
- Conjugated protein: Protein combined with a non-protein unit, e.g. haemoglobin, myoglobin.
- Derived proteins: formed due to chemical or enzymic action on a protein itself, e.g. high biological value proteins come from animal sources, low biological value proteins come from plant sources.

 $(4 \text{ sources} \times 3 \text{ marks} = 12 \text{ marks})$ Dietary sources

- Animal: meat, poultry, fish, eggs, milk, cheese (dairy product).
- Plant: soya beans, TVP, nuts, legumes (peas, beans, lentils).

Functions in the body

 $(2 \text{ functions} \times 4 \text{ marks} = 8 \text{ marks})$

- Growth and repair of body cells.
- Formation of muscles, skin and cell membranes.

(c) Explain the following properties of protein and give an example of each.

Denaturation Coagulation LINK LINK p. 8 p. 8

Include examples from both animal and plant sources – choose two sources from each group.

(12 marks)