

CONTENTS

Introduction	İV
1. Coordinate Geometry of the Line	1
2. Geometry Theorems	28
3. Constructions	57
4. Transformation Geometry	69
5. Trigonometry I	85
6. Trigonometry II: Real Life Applications	102
7. Perimeter, Area, Nets and Volume	124
8. Fundamental Principles of Counting	157
9. Probability	165
10. Statistics I: Statistical Investigations	191
11. Statistics II: Central Tendency and Spread of Data	199
12. Statistics III: Representing Data	213
Glossary of Statistical Terms	238
Calculator Instructions	240

Please note:

•	The philosophy of Project Maths is that topics can overlap, so you may encounter Paper	1
	material on Paper 2 and vice versa.	

- The Exam questions marked by the symbol in this book are selected from the following:
 1. SEC Exam papers
 - 2. Sample exam papers
 - 3. Original and sourced exam-type questions

Coordinate Geometry of the Line

- To know where to find the coordinate geometry formulae in the booklet of formulae and tables
- To learn how to apply these formulae to procedural and in-context examination questions
- To gain the ability, with practice, to recall and select the appropriate technique required by the exam questions

Coordinating the plane and plotting points

aims

The four quadrants

The intersecting *x*-axis and *y*-axis divide the plane into four regions called **quadrants**. These are numbered 1st, 2nd, 3rd and 4th, as shown on the right.

Translation

In mathematics, movement in a straight line is called a translation.

Under a translation, every point is moved the same distance in the same direction.

COORDINATE GEOMETRY OF THE LINE

3

Midpoint of a line segment

If (x_1, y_1) and (x_2, y_2) are two points, their midpoint is given by the formula:

 $\text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

(See booklet of formulae and tables page 18)

Before using coordinate geometry formulae, always allocate one point to be (x_1, y_1) and the other to be (x_2, y_2) .

Example

$$A(8, 5) \text{ and } B(-10, 11) \text{ are two points. Find the midpoint of } [AB]$$

Solution
Midpoint formula $= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
Let $(x_1, y_1) = (8, 5) \text{ and } (x_2, y_2) = (-10, 11)$
Midpoint $= \left(\frac{8 - 10}{2}, \frac{5 + 11}{2}\right) = \left(\frac{-2}{2}, \frac{16}{2}\right) = (-1, 8)$

In some questions, we will be given the midpoint and one end point of a line segment. We will be asked to find the other end point.

To find the other end point, use the following method:

- 1. Draw a rough diagram.
- 2. Find the translation that maps (moves) the given end point to the midpoint.
- 3. Apply the same translation to the midpoint to find the other end point.

Example

If K(5, -3) is the midpoint of [PQ] and P = (4, 1), find the coordinates of Q.

Solution

1. Rough diagram:

$$P(4, 1) \quad K(5, -3) \quad Q(?, ?)$$

2. Translation from *P* to *K*, \overrightarrow{PK} . Rule: add 1 to *x*, subtract 4 from *y*.

This can be written as
$$\begin{pmatrix} 1\\-4 \end{pmatrix}$$

3. Apply this translation to *K*:

$$K(5, -3) \rightarrow (5 + 1, -3 - 4) = (6, -7)$$

 \therefore The coordinates of Q are (6, -7).

Distance between two points

The given diagram shows the points $A(x_1, y_1)$ and $B(x_2, y_2)$.

$$|BC| = y_2 - y_1$$
 and $|AC| = x_2 - x_1$

Using the theorem of Pythagoras:

$$|AB|^{2} = |AC|^{2} + |BC|^{2}$$
$$= (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}$$
$$. |AB| = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$

5

The distance (length) between $A(x_1, y_1)$ and $B(x_2, y_2)$ is $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ (See booklet of formulae and tables page 18).

swarm when each unit is one mm.

COORDINATE GEOMETRY OF THE LINE

(i) If the lines of geese can be represented by the equations 2x + y - 11 = 0 and 3x - 2y - 6 = 0, find the coordinates of the leading goose.

After 1 hour, the leading goose has flown to a point (37, 67).

- (ii) Assuming the geese flew in a straight line and taking each unit to represent 1 km, find the distance travelled by the geese to the nearest km.
- (iii) Hence, find the average flying speed in m/s.

Solution

(i) Solving the linear equations in two variables:

2x + y = 11 ①3x - 2y = 64x + 2y = 22 ① × 23x - 2y = 67x = 28 (Add)x = 4

Solving linear equations is a skill you must know. Another example appears later in this chapter.

exam

... The solution is x = 4 and y = 3 or (4, 3)(ii) Use distance formula = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Let $(x_1, y_1) = (4, 3)$ and $(x_2, y_2) = (37, 67)$ Distance = $\sqrt{(37 - 4)^2 + (67 - 3)^2} = \sqrt{1,089 + 4,096} = \sqrt{5,185}$ = 72.00694411 Distance to nearest km = 72 km (iii) Speed = $\frac{\text{Distance}}{\text{Time}} = \frac{72 \times 1,000}{60 \times 60} = 20 \text{ m/sec}$ The exam may contain in-context questions at any stage. Be prepared to employ techniques learned elsewhere, as in the above question where Speed = $\frac{\text{Distance}}{\text{Time}}$. This would seem to have no link to coordinate geometry.

Slope of a line

The slope of the line *AB* is defined as the $\frac{\text{vertical change}}{\text{horizontal change}} \quad \text{or} \quad \frac{\text{rise}}{\text{run}}$ The slope of *AB* = $\frac{5}{10} = \frac{1}{2}$.

9

Positive and negative slopes

As we move from left to right the slope is positive if the line is rising and the slope is negative if the line is falling

SolutionUse $\frac{\text{rise}}{\text{run}}$ (by counting the boxes) in each case to find(i) Slope $\text{GR} = \frac{8}{8} = 1$ Line going up \Rightarrow positive slope(ii) Slope $\text{BR} = -\frac{12}{1} = -12$ Line going down \Rightarrow negative slope(iii) Slope $\text{HJ} = \frac{0}{3} = 0$ Horizontal line \Rightarrow slope-zero(iv) Slope $\text{GA} = \frac{8}{4} = 2$ Line going up \Rightarrow positive slope(v) Slope $\text{AB} = -\frac{12}{5}$ Line going down \Rightarrow negative slope(vi) Slope $\text{BG} = -\frac{4}{9}$ Line going down \Rightarrow negative slope

An accountant plots the straight line value of a computer over a three-year period on the given graph.

- (i) Find the slope of the line.
- (ii) Hence write down the average rate of change in the value of the computer.

Justify your answer.

